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We show that Le´vy-walk hyperdiffusion, in which diffusing particles run over all the points of their trajec-
tories, can enhance the kinetics of one-species bimolecular annihilation (A1A→0) and coagulation
(A1A→A). Simple probabilistic arguments indicate that the asymptotic particle number decay goes as
N(t)}t21/g, with g the Lévy exponent (0,g,2). Therefore, forg,1 those reactions proceed faster than in
the usual chemical-kinetics approximation, which predictsN(t)}t21. Our results are validated by numerical
simulations.@S1063-651X~96!01707-2#

PACS number~s!: 05.40.1j, 82.20.2w

It is by now well known that reaction and transport pro-
cesses interact in a nontrivial way, affecting the evolution
properties of each other@1#. This interplay is relevant in
many actual problems of physics, chemistry@2#, and biology
@3#. Besides, as a paradigm of complex behavior, it also
plays a fundamental role in our basic understanding on com-
plex systems.

The mutual effect of reaction and transport is particularly
well understood when the underlying transport mechanism is
given by ordinary diffusion. This process is characterized by
a mean square displacement which is proportional to the time
^x2&}Dt with D the diffusivity. In particular, for one-
species annihilation (A1A→0) and coagulation
(A1A→A), it is known that ordinary diffusion affects the
long-time decay of the particle numberN(t) @4#

N~ t !}H ~Dt !2d/2 for d,2

~Dt !21 for d.2,
~1!

with d the dimension of the reaction substrate. Ford,2, the
particle number decay is slower than the decay predicted by
the corresponding equation of chemical kineticsṄ}2N2.
This equation assumes that all the particle pairs have the
same reaction probability—a situation which only occurs in
a well stirred system— and impliesN(t)}t21. For d,2,
ordinary diffusion is not an efficient transport~stirring!
mechanism and, therefore, it limits the reaction rate.

In the last few years, transport processes other than ordi-
nary diffusion have attracted great attention. In particular,
anomalous diffusion has been shown to act as the basic
transport mechanism in a wide class of physical systems,
ranging from kinetics in porous media@5# to turbulent flows
@6#, to chaotic phase-space motion@7#. Anomalous diffusion
is characterized by a mean square displacement proportional
to a positive power of the time,^x2&}tb with bÞ1. Subdif-
fusion (b,1) occurs, for instance, in transport processes on
highly heterogeneous substrates@8#, whereas hyperdiffusion
(b.1) characterizes transport in turbulent fluids and chaotic
systems.

A useful mathematical tool for modeling hyperdiffusion
consists in a generalization of random walks, in which the
jump-length probabilityp(r ) decays, for larger , as

p~r !}r2d2g, ~2!

with g,2. These probability distributions have infinite
second-~and higher-! order moments and belong to the class
of stable or Le´vy distributions@9#. Their power-law depen-
dence on the jump length imply that no characteristic length
scale can be associated with their large-r behavior, a prop-
erty which is related to self-similarity~fractal! features in the
evolution of the random walk@9,10#.

In connection with the kinetics of the one-species bimo-
lecular reactions quoted above, the limitation implied by hy-
perdiffusion in the decay of the particle number is expected
to be less severe than in the case of ordinary diffusion. In
fact, as a transport process, hyperdiffusion is more efficient
than ordinary diffusion and, therefore, should improve the
stirring of the reacting particles. In the frame of Le´vy ran-
dom walks, this is indeed suggested by some simple scaling
arguments@11,12#, and can be confirmed by a more rigorous
analysis based on the continuous-time random-walk
~CTRW! theory @13#. This analysis has shown that, for a
system of coagulating or annihilating particles which per-
form a random walk with a jump probability of the form of
Eq. ~2!, the long-time decay of the particle number behaves
as

N~ t !}H t2d/g for d,g

t21 for d.g.
~3!

Note that this result reduces to Eq.~1! in the limit g→2,
where ordinary diffusion is recovered from Le´vy random
walks.

In Fig. 1, empty dots stand for the numerical measure-
ment of the exponenta in the asymptotic particle number
decayN(t)}ta as a function of the Le´vy exponentg, in a
series of simulations on a one-dimensional lattice. The
curves correspond to the analytical prediction; forg.2, the
result for ordinary diffusiona521/2 holds.

Actually, however, the realization of a Le´vy random walk
admits to be performed in two different ways. In the first
one, the jumping particle abandons its site, ‘‘flies’’ over the
substrate, and finally ‘‘lands’’ on the arrival point. This re-
alization of the random walk is more properly called a Le´vy
flight. In the second form of realization, instead, the particle
performs the whole path towards its destination on the sub-
strate, running over all the intermediate points. Such a real-
ization of the transport process is called a Le´vy walk. Note
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that these two instances of realization of a random walk oc-
curs not only for Le´vy distributions: they always appear
when the length of the jumps is not fixed and admits a cer-
tain distribution. The applicability of each type of realization
to the description of an actual system depends on the under-
lying physical processes. For instance, Le´vy walks should
apply to turbulent flows, whereas phase-space transport in
chaotic mappings should be described by Le´vy flights.

If the mean time associated with each jump is kept con-
stant @14#, the difference between Le´vy flights and Lévy
walks is irrelevant to the transport properties of the system.
On the contrary, this difference could have an important ef-
fect on the reaction kinetics. In fact, in Le´vy flights a jump-
ing particle can react only if its arrival site is occupied by
another particle. In Le´vy walks, instead, any particle situated
on the path of the moving particle can act as its partner in a
reaction event. With respect to reactions, Le´vy walks should
therefore be a more efficient transport mechanism than Le´vy
flights.

The analytical tool based on the CTRW theory—which by
now provides the most rigorous mean to study the interplay
of reactions and anomalous diffusion, producing the results
quoted in Eq.~3!—applies only to the case of Le´vy flights
@15#. A formalism able to take into account the reactions that
can occur along the path of a moving particle in a Le´vy walk
has not been found yet. However, the following simple ar-
guments make it possible to evaluate the asymptotic particle
number decay, at least on one-dimensional substrates.

Consider a system of annihilating or coagulating particles
which perform a one-dimensional Le´vy walk, with a jump
probabilityp(r )}r212g for larger . At long times, when the
particle density is low, the reaction kinetics is dominated by
this asymptotic behavior of the jump probability. In fact,
only long jumps are relevant to the evolution of the particle
number. Suppose that, at a given time, the particle number is
N(t). The mean distance between nearest neighbor particles
is thenx}1/N. The reaction rate per particle can therefore be
evaluated as the probability that a particle perform a jump

greater thanx. This probability is proportional to the integral

E
x

`

r212gdr}Ng. ~4!

If, as stated before, the mean time associated with jumps is a
constant@14#, Eq. ~4! implies that the particle number should
obey Ṅ/N}2Ng, which gives

N~ t !}t21/g. ~5!

For 1,g,2, this result coincides with the decay pre-
dicted by the CTRW formulation, Eq.~3! with d51, for
Lévy flights. Forg,1, instead—while the CTRW prediction
coincides with the result of the chemical kinetics equation
N(t)}t21—our arguments suggest that the particle number
decaysfasterthant21. This remarkable conclusion indicates
that, in the form of Le´vy walks, hyperdiffusion is able to
enhancethe kinetics of reactions with respect to the predic-
tion of the chemical kinetics equation. This is in contrast
with the limitation imposed by other transport mechanisms
~subdiffusion, ordinary diffusion, and Le´vy-flight hyperdiffu-
sion!, which always retard—or, at most, do not affect—the
evolution of the reacting system.

In view of the fact that the enhancement of reaction pro-
cesses by Le´vy-walk hyperdiffusion has been derived from
somewhat informal arguments, it is worthwhile to compare
this result with numerical simulations. Filled dots in Fig. 1
correspond to the numerical measurement of the exponent
a in the asymptotic particle number decayN(t)}ta for Lévy
walks. For 1,g,2, a exhibits the same behavior as for
Lévy flights, whereas forg,1 it still closely follows the
curve a521/g. This confirms our prediction Eq.~5! for
0,g,2.

We have reported here a completely unforeseen aspect of
the interplay of reaction and transport processes. Our results,
which are based on some simple probabilistic arguments and
have been confirmed by numerical simulations, indicate that
Lévy-walk hyperdiffusion in one dimension is able to en-
hance the kinetics of one-species bimolecular reactions
(A1A→0 andA1A→A). Under this transport mechanism,
the particle number decay is faster than the decay predicted
by the equations of chemical kinetics. Forg,1—when even
the first moment of the jump probability diverges—Le´vy-
walk hyperdiffusion is such an efficient transport mechanism
that the annihilation of particles in not able to substantially
decrease the reaction probability per particle. In fact, this
effect could be heuristically incorporated to the equation of
chemical kineticsṄ52kN2 by admiting a reaction rate
which increaseswith timek(t)}t2111/g. The explanation of
this remarkable effect deserves the formulation of more rig-
orous analytical arguments, in order to study its extension to
many-dimensional systems and to other reaction models.
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FIG. 1. Numerical measurement of the exponenta in the par-
ticle number decayN(t)}ta in one-species binary annihilation
(A1A→0), versus the Le´vy exponentg. Empty and filled dots
correspond to Le´vy flights and Lévy walks, respectively. The curve
stand for the analytical prediction fora as a function ofg,
a521/g.
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